ArHsp21, a developmentally regulated small heat-shock protein synthesized in diapausing embryos of Artemia franciscana.

نویسندگان

  • Zhijun Qiu
  • Thomas H Macrae
چکیده

Embryos of the crustacean, Artemia franciscana, undergo alternative developmental pathways, producing either larvae or encysted embryos (cysts). The cysts enter diapause, characterized by exceptionally high resistance to environmental stress, a condition thought to involve the sHSP (small heat-shock protein), p26. Subtractive hybridization has revealed another sHSP, termed ArHsp21, in diapause-destined Artemia embryos. ArHsp21 shares sequence similarity with p26 and sHSPs from other organisms, especially in the alpha-crystallin domain. ArHsp21 is the product of a single gene and its synthesis occurred exclusively in diapause-destined embryos. Specifically, ArHsp21 mRNA appeared 2 days post-fertilization, followed 1 day later by the protein, and then increased until embryo release at day 5. No ArHsp21 protein was detected in embryos developing directly into larvae, although there was a small amount of mRNA at 3 days post-fertilization. The protein was degraded during post-diapause development and had disappeared completely from second instar larvae. ArHsp21 formed large oligomers in encysted embryos and transformed bacteria. When purified from bacteria, ArHsp21 functioned as a molecular chaperone in vitro, preventing heat-induced aggregation of citrate synthase and reduction-driven denaturation of insulin. Sequence characteristics, synthesis patterns and functional properties demonstrate clearly that ArHsp21 is an sHSP able to chaperone other proteins and contribute to stress tolerance during diapause. As such, ArHsp21 would augment p26 chaperone activity and it may also possess novel activities that benefit Artemia embryos exposed to stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Small Heat Shock Protein p26 Aids Development of Encysting Artemia Embryos, Prevents Spontaneous Diapause Termination and Protects against Stress

Artemia franciscana embryos enter diapause as encysted gastrulae, a physiological state of metabolic dormancy and enhanced stress resistance. The objective of this study was to use RNAi to investigate the function of p26, an abundant, diapause-specific small heat shock protein, in the development and behavior of encysted Artemia embryos (cysts). RNAi methodology was developed where injection of...

متن کامل

Gene expression in diapause-destined embryos of the crustacean, Artemia franciscana

Diapause-destined embryos of the crustacean Artemia franciscana cease development as gastrulae, encyst, and enter a resting stage characterized by greatly reduced metabolic activity and extreme stress resistance. To better understand diapause induction and maintenance in Artemia embryos gene expression was analyzed by subtractive hybridization at two days post-fertilization, a time early in thi...

متن کامل

Nuclear p26, a small heat shock/alpha-crystallin protein, and its relationship to stress resistance in Artemia franciscana embryos.

The role of the small heat shock/alpha-crystallin protein, p26, in transcription in Artemia franciscana embryos was examined using isolated nuclei, containing either control or elevated levels of p26, in transcription run-on assays. Heat shock or anoxia in vivo and acid pH in vitro were used to transfer p26 into nuclei. The results suggest that parameters other than, or in addition to, p26 are ...

متن کامل

Artemin, a diapause-specific chaperone, contributes to the stress tolerance of Artemia franciscana cysts and influences their release from females.

Females of the crustacean Artemia franciscana produce either motile nauplii or gastrula stage embryos enclosed in a shell impermeable to nonvolatile compounds and known as cysts. The encysted embryos enter diapause, a state of greatly reduced metabolism and profound stress tolerance. Artemin, a diapause-specific ferritin homolog in cysts has molecular chaperone activity in vitro. Artemin repres...

متن کامل

Feeding Artemia larvae with yeast heat shock proteins 82 (HSPs82) to enhance the resistance against abiotic stresses (hyperosmotic and high temperatures)

Feeding farmed Artemia with yeast heat shock proteins is a novel way to protect them from stress conditions during the culture.  In this study, the effect of feeding with stressed new identified Saccharomyces cerevisiae strain YG3-1 yeasts (containing induced heat shock proteins) on the survival of Artemia in stress conditions, was evaluated. For this purpose, heat shock proteins 82 (Hsps 82) o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 411 3  شماره 

صفحات  -

تاریخ انتشار 2008